254 research outputs found

    Representation of statistical sound properties in human auditory cortex

    Get PDF
    The work carried out in this doctoral thesis investigated the representation of statistical sound properties in human auditory cortex. It addressed four key aspects in auditory neuroscience: the representation of different analysis time windows in auditory cortex; mechanisms for the analysis and segregation of auditory objects; information-theoretic constraints on pitch sequence processing; and the analysis of local and global pitch patterns. The majority of the studies employed a parametric design in which the statistical properties of a single acoustic parameter were altered along a continuum, while keeping other sound properties fixed. The thesis is divided into four parts. Part I (Chapter 1) examines principles of anatomical and functional organisation that constrain the problems addressed. Part II (Chapter 2) introduces approaches to digital stimulus design, principles of functional magnetic resonance imaging (fMRI), and the analysis of fMRI data. Part III (Chapters 3-6) reports five experimental studies. Study 1 controlled the spectrotemporal correlation in complex acoustic spectra and showed that activity in auditory association cortex increases as a function of spectrotemporal correlation. Study 2 demonstrated a functional hierarchy of the representation of auditory object boundaries and object salience. Studies 3 and 4 investigated cortical mechanisms for encoding entropy in pitch sequences and showed that the planum temporale acts as a computational hub, requiring more computational resources for sequences with high entropy than for those with high redundancy. Study 5 provided evidence for a hierarchical organisation of local and global pitch pattern processing in neurologically normal participants. Finally, Part IV (Chapter 7) concludes with a general discussion of the results and future perspectives

    An information theoretic characterisation of auditory encoding.

    Get PDF
    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content

    fMRI evidence for a cortical hierarchy of pitch pattern processing

    Get PDF
    Pitch patterns, such as melodies, consist of two levels of structure: a global level, comprising the pattern of ups and downs, or contour; and a local level, comprising the precise intervals that make up this contour. An influential neuropsychological model suggests that these two levels of processing are hierarchically linked, with processing of the global structure occurring within the right hemisphere in advance of local processing within the left. However, the predictions of this model and its anatomical basis have not been tested in neurologically normal individuals. The present study used fMRI and required participants to listen to consecutive pitch sequences while performing a same/different one-back task. Sequences, when different, either preserved (local) or violated (global) the contour of the sequence preceding them. When the activations for the local and global conditions were contrasted directly, additional activation was seen for local processing in right planum temporale and posterior superior temporal sulcus (pSTS). The presence of additional activation for local over global processing supports the hierarchical view that the global structure of a pitch sequence acts as a “framework” on which the local detail is subsequently hung. However, the lateralisation of activation seen in the present study, with global processing occurring in left pSTS and local processing occurring bilaterally, differed from that predicted by the neuroanatomical model. A re-examination of the individual lesion data on which the neuroanatomical model is based revealed that the lesion data equally well support the laterality scheme suggested by our data. While the present study supports the hierarchical view of local and global processing, there is an evident need for further research, both in patients and neurologically normal individuals, before an understanding of the functional lateralisation of local and global processing can be considered established

    Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels

    Get PDF
    Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion

    Life and times:synthesis, trafficking, and evolution of VSG

    Get PDF
    Evasion of the acquired immune response in African trypanosomes is principally mediated by antigenic variation, the sequential expression of distinct variant surface glycoproteins (VSGs) at extremely high density on the cell surface. Sequence diversity between VSGs facilitates escape of a subpopulation of trypanosomes from antibody-mediated killing. Significant advances have increased understanding of the mechanisms underpinning synthesis and maintenance of the VSG coat. In this review, we discuss the biosynthesis, trafficking, and turnover of VSG, emphasising those unusual mechanisms that act to maintain coat integrity and to protect against immunological attack. We also highlight new findings that suggest the presence of unique or highly divergent proteins that may offer therapeutic opportunities, as well as considering aspects of VSG biology that remain to be fully explored

    Area minimizing discs in metric spaces

    Get PDF
    We solve the classical problem of Plateau in the setting of proper metric spaces. Precisely, we prove that among all disc-type surfaces with prescribed Jordan boundary in a proper metric space there exists an area minimizing disc which moreover has a quasi-conformal parametrization. If the space supports a local quadratic isoperimetric inequality for curves we prove that such a solution is locally Hölder continuous in the interior and continuous up to the boundary. Our results generalize corresponding results of Douglas Radò and Morrey from the setting of Euclidean space and Riemannian manifolds to that of proper metric spaces

    Hemispheric Asymmetries in Speech Perception: Sense, Nonsense and Modulations

    Get PDF
    Background: The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.Methodology: A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech) which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET) was used to compare which brain regions were active when participants listened to the different sounds.Conclusions: Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible) was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features

    Reduced prediction error responses in high-as compared to low-uncertainty musical contexts

    Get PDF
    Abstract Theories of predictive processing propose that prediction error responses are modulated by the certainty of the predictive model or precision . While there is some evidence for this phenomenon in the visual and, to a lesser extent, the auditory modality, little is known about whether it operates in the complex auditory contexts of daily life. Here, we examined how prediction error responses behave in a more complex and ecologically valid auditory context than those typically studied. We created musical tone sequences with different degrees of pitch uncertainty to manipulate the precision of participants’ auditory expectations. Magnetoencephalography was used to measure the magnetic counterpart of the mismatch negativity (MMNm) as a neural marker of prediction error in a multi-feature paradigm. Pitch, slide, intensity and timbre deviants were included. We compared high-entropy stimuli, consisting of a set of non-repetitive melodies, with low-entropy stimuli consisting of a simple, repetitive pitch pattern. Pitch entropy was quantitatively assessed with an information-theoretic model of auditory expectation. We found a reduction in pitch and slide MMNm amplitudes in the high-entropy as compared to the low-entropy context. No significant differences were found for intensity and timbre MMNm amplitudes. Furthermore, in a separate behavioral experiment investigating the detection of pitch deviants, similar decreases were found for accuracy measures in response to more fine-grained increases in pitch entropy. Our results are consistent with a precision modulation of auditory prediction error in a musical context, and suggest that this effect is specific to features that depend on the manipulated dimension—pitch information, in this case. Highlights The mismatch negativity (MMNm) is reduced in musical contexts with high pitch uncertainty The MMNm reduction is restricted to pitch-related features Accuracy during deviance detection is reduced in contexts with higher uncertainty The results suggest a feature-selective precision modulation of prediction error Materials, data and scripts can be found in the Open Science Framework repository: http://bit.ly/music_entropy_MMN DOI: 10.17605/OSF.IO/MY6T

    Single Dose Novel Salmonella Vaccine Enhances Resistance against Visceralizing L. major and L. donovani Infection in Susceptible BALB/c Mice

    Get PDF
    Visceral leishmaniasis is a major neglected tropical disease, with an estimated 500,000 new cases and more than 50,000 deaths attributable to this disease every year. Drug therapy is available but costly and resistance against several drug classes has evolved. Despite all efforts, no commercial, let alone affordable, vaccine is available to date. Thus, the development of cost effective, needle-independent vaccines is a high priority. Here, we have continued efforts to develop live vaccine carriers based on recombinant Salmonella. We used an in silico approach to select novel Leishmania parasite antigens from proteomic data sets, with selection criteria based on protein abundance, conservation across Leishmania species and low homology to host species. Five chosen antigens were differentially expressed on the surface or in the cytosol of Salmonella typhimurium SL3261. A two-step procedure was developed to select optimal Salmonella vaccine strains for each antigen, based on bacterial fitness and antigen expression levels. We show that vaccine strains of Salmonella expressing the novel Leishmania antigens LinJ08.1190 and LinJ23.0410 significantly reduced visceralisation of L. major and enhanced systemic resistance against L. donovani in susceptible BALB/c mice. The results show that Salmonella are valid vaccine carriers for inducing resistance against visceral leishmaniasis but that their use may not be suitable for all antigens

    Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism

    Get PDF
    Trypanosoma brucei gambiense is responsible for more than 90% of reported cases of human African trypanosomosis (HAT). Infection can last for months or even years without major signs or symptoms of infection, but if left untreated, sleeping sickness is always fatal. In the present study, different T. b. gambiense field isolates from the cerebrospinal fluid of patients with HAT were adapted to growth in vitro. These isolates belong to the homogeneous Group 1 of T. b. gambiense, which is known to induce a chronic infection in humans. In spite of this, these isolates induced infections ranging from chronic to silent in mice, with variations in parasitaemia, mouse lifespan, their ability to invade the CNS and to elicit specific immune responses. In addition, during infection, an unexpected early tropism for the brain as well as the spleen and lungs was observed using bioluminescence analysis. The murine models presented in this work provide new insights into our understanding of HAT and allow further studies of parasite tropism during infection, which will be very useful for the treatment and the diagnosis of the disease
    corecore